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Expression of the human T-cell leukemia virus type 1 (HTLV-1) oncoprotein Tax is correlated with cellular
transformation contributing to the development of adult T-cell leukemia. Tax has been shown to modulate the
activities of several cellular promoters. Existing evidence suggests that Tax need not directly bind to DNA to
accomplish these effects but rather that it can act through binding to cellular factors, including members of the
CREB/ATF family. Exact mechanisms of HTLV-1 transformation of cells have yet to be fully defined, but the
process is likely to include both activation of cellular-growth-promoting factors and repression of cellular
tumor-suppressing functions. While transcriptional activation has been well studied, transcriptional repres-
sion by Tax, reported recently from several studies, remains less well understood. Here, we show that Tax
represses the TATA-less cyclin A promoter. Repression of the cyclin A promoter was seen in both ts13 adherent
cells and Jurkat T lymphocytes. Two other TATA-less promoters, cyclin D3 and DNA polymerase o, were also
found to be repressed by Tax. Interestingly, all three promoters share a common feature of at least one
conserved upstream CREB/ATF binding site. In electrophoretic mobility shift assays, we observed that Tax
altered the formation of a complex(es) at the cyclin A promoter-derived ATF site. Functionally, we correlated
removal of the CREB/ATF site from the promoter with loss of repression by Tax. Furthermore, since a Tax
mutant protein which binds CREB repressed the cyclin A promoter while another mutant protein which does
not bind CREB did not, we propose that this Tax repression occurs through protein-protein contact with
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CREB/ATF.

Infection with human T-cell leukemia virus type 1 (HTLV-1)
has been linked to the development of several diseases: adult
T-cell leukemia (ATL), tropical spastic paraparesis, and vari-
ous neurological disorders termed HTLV-1-associated my-
elopathy (33). The HTLV-1-encoded oncoprotein Tax has
been implicated in the transformation of T cells (reviewed in
reference 91), as well as in tumor formation in transgenic mice
(26). Although the precise mechanisms utilized by Tax to in-
duce transformation are not known, this protein has been
shown to modulate cellular genes that are involved in cellular
proliferation and cell cycle control (reviewed in reference 55).
Tax up-regulates expression of interleukin-2 (IL-2), IL-2 re-
ceptor, c-fos, c-Jun, erg-1, and granulocyte-macrophage colo-
ny-stimulating factor (reviewed in references 32 and 51; 52)
and represses expression of the B-polymerase, c-myb, Lck, and
p53 promoters (11, 39, 48, 57, 84). Tax has also been shown to
affect the functions of IKKy (10, 27, 40), c-myc (69), Bax (8),
MADI1 (41), cyclin D (56), and MyoD (63).

Cyclins are critical factors in cell cycle progression (25, 71,
72). Cyclins associate with cyclin-dependent kinases and regu-
late the functions of cellular proteins that are required for
progression through the cell cycle (G, S, G,, and M) phases.
The D cyclins are induced by growth factors and mediate
progression through G,. Cyclin A begins to accumulate after
the G,/S transition, and its associated kinase activity is re-
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quired for both completion of S phase and entry into as well as
exit from M phase (reviewed in reference 42). Aspects of cell
cycle progression have been well studied in a model system
utilizing a baby hamster kidney cell line, ts13, which is temper-
ature sensitive for the G;-to-S transition (82). ts13 exhibits a
growth defect at the restrictive temperature (39°C), which re-
sults from a point mutation in cell cycle gene 1 (CCG1) (68).
CCG1 was subsequently shown to be identical to the gene for
the TAF;250 subunit of TFIID (31). At 39°C, a subset of cell
cycle-related promoters, including the cyclin A (88), cyclin D3
(81), and DNA polymerase « (44) promoters, is transcription-
ally repressed. This restricted-growth phenotype of ts13 at
39°C can be complemented by overexpression of wild-type
TAF;250 (88) and the G,-specific cyclin D1 (67). Interestingly,
several viruses also encode functions that rescue the G,-re-
stricted phenotype of ts13. Thus, simian virus 40 (SV40) large
T antigen (13) and hepatitis B virus (HBV) X oncoprotein (29)
also complement the CCG1 mutation in ts13 cells.

The findings for ts13 cells suggest that many viruses might
encode a CCG1/TAF;250-like activity. In principle, this makes
sense since viruses should evolve the ability to usurp the cell
cycle machinery for viral replicative benefits. How the HTLV
retroviruses might behave in this regard has not been exten-
sively investigated. Because Tax’s properties as a transcrip-
tional activator and as a transforming protein resemble those
of both SV40 T antigen (TAg) and HBV X protein, we rea-
soned that Tax might have an X- or TAg-like CCG1/TAF,;250
activity. Hence, using ts13 cells, we investigated this possibility.
Unexpectedly, we found that Tax, in contrast to SV40 TAg or
HBV X, failed to rescue the growth defect of ts13 cells at the
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restrictive temperature. In attempting to define the differences
between Tax and TAg, we compared the transcriptional func-
tions of the two on TAF;250-dependent promoters. We ob-
served that, whereas TAg activated TAF;250-dependent ex-
pression of cyclin A in ts13 cells, Tax actually repressed the
cyclin A promoter.

MATERIALS AND METHODS

Cell lines. ts13 cells are temperature sensitive baby hamster kidney cells (82),
which were cultured at 32°C. ts13 cells and HeLa cells were propagated in
Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal
bovine serum (FBS; HyClone). JPX9, a derivative of Jurkat cells, contains an
inducible Tax cDNA under the control of the metallothionein promoter (58).
Tax expression can be induced with zinc (120 M ZnCl,) or cadmium (20 pM
CdCl,). TL-Su and ILT-Hod (from Mari Kannagi, Tokyo Medical and Dental
University, Tokyo, Japan) cells were derived from peripheral blood lymphocytes
of an HTLV-1 carrier and an ATL patient, respectively. MT4 and C8166-45 are
human T-cell lines transformed by coculture with HTLV-1 producer cells. JPX9,
Jurkat, C8166-45, MT4, ILT-Hod, and TL-Su cells were cultured in RPMI 1640
supplemented with 10% FBS. ILT-Hod was maintained in RPMI 1640 supple-
mented with 10% FBS and 20 U of IL-2 (Boehringer Mannheim) per ml.

Plasmids. pHpX (54), pU;RCAT (7), and TaxH52Q (70) have been described
previously. LTR-luc was constructed by excising the HTLV-1 long terminal
repeat (LTR) from pUs;RCAT at the Xhol and HindIII restriction sites and
reinserting the LTR into pGL3-Pr (Promega) at the XAoI and HindIII restriction
sites. DPAAATF was constructed by synthesis of an oligomer consisting of the
fragment from —65 to +7 of the DNA polymerase o promoter (60) with XAol
and HindlIII restriction sites at the 5" and 3’ ends, respectively. The oligomer was
then inserted into the Xhol and HindIII sites of the pGL3-PR luciferase reporter
plasmid (Promega). pNFkB-luc was purchased from Stratagene. All other plas-
mids were generous gifts of R. Tjian, Howard Hughes Medical Institute, Berke-
ley, Calif. (CycA-luc and pCMVhTAF;250); C. Z. Giam, U.S. Uniformed
Health Services, Bethesda, Md. (TaxL90A and TaxV89A); P. Hinds, Harvard
Medical School, Boston, Mass. (pCycD3-luc); T. Wang, Stanford University
School of Medicine, Stanford, Calif. (pDPA LAS5’); and K. Peden, Food and
Drug Administration, Bethesda, Md. (pRSVTAg).

Transfections. Jurkat cells were transfected using SuperFect (Qiagen) accord-
ing to manufacturer’s protocol. Briefly, 5.0 X 10° cells per well (six-well plate)
were transfected with 3 to 10 wg of DNA and 20 pl of SuperFect reagent. The
transfection mixture was removed from cells after 4 h and replaced with com-
plete RPMI 1640 supplemented with 10% FBS. Cells were harvested 46 to 48 h
after medium replacement. ts13 cells were transfected using Lipofectamine (Life
Technologies) according to the manufacturer’s protocol. Six-well plates were
seeded at 50 to 60% confluence and transfected the following day with 3 to 10 pg
of DNA and 12 pl of Lipofectamine reagent. The transfection mixture was
removed from cells after 4 h and replaced with complete DMEM supplemented
with 10% FBS. Plates were incubated at 32°C for 12 h, followed by incubation at
39°C for 24 h, and then harvested. In all transfections, the total amount of DNA
was equalized with pUC19. Jurkat cell transfections were normalized to B-ga-
lactosidase activity expressed from a cotransfected cytomegalovirus B-galactosi-
dase (Invitrogen) plasmid.

Luciferase assays. Transfected cells were harvested after two washes with PBS.
Adherent cells were scraped into 250 pl, and suspension cells were resuspended
into 200 pl of reporter lysis buffer (Promega). Lysates were prepared according
to the protocol of the manufacturer (Promega). Luciferase activity was measured
in an Optocomp II luminometer (MGM Instruments).

Electrophoretic mobility shift assay (EMSA). A 21-bp oligomer containing the
terminal deoxynucleotidyltransferase (TdT) initiator sequence or a 28- or 61-bp
oligomer containing the ATF-responsive element alone or the ATF element plus
an initiator site (Inr) were labeled with [y->>P]ATP (Amersham Pharmacia)
using T4 polynucleotide kinase (New England Biolabs). Probes were added
(~30,000 cpm) to reaction mixtures (25 wl) containing 50 mM Tris-HCI (pH 7.4),
10 mM MgCl,, 40 mM KCl, 20% glycerol, 0.5% Triton X-100, 5 mM EDTA, 5
mM dithiothreitol, 13.2 pg of salmon sperm DNA per ml, and 2 pg of nuclear
extract. JPX9 and Jurkat nuclear extracts were prepared as described previously
(17). MT4 and C8166-45 nuclear extracts were purchased from Geneka Biotech-
nology, Inc. Reaction mixtures were incubated at room temperature for 30 min.
Complexes were resolved in a 4% polyacrylamide gel in 0.5 X Tris-borate-EDTA
buffer at 180 V for 2 h and visualized by autoradiography.

Western blotting. Approximately 107 cells were harvested, washed twice in
phosphate-buffered saline (PBS), and resuspended into 200 pl of 2X sample
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buffer (100 mM Tris [pH 6.8], 4% sodium dodecyl sulfate, 20% glycerol, 5%
B-mercaptoethanol, and 0.05% bromphenol blue). Ten microliters was loaded
onto a sodium dodecyl sulfate-10% polyacrylamide gel and electrophoresed.
Afterwards, the gel was electroblotted onto Immobilon-P membranes (Millipore
Corp.) using a Millipore semidry blotting apparatus. Visualization of antigens on
the membrane was with rabbit antiserum raised against Tax and used at a 1:1,000
dilution (38), mouse monoclonal anti-cyclin A antibody used at a 1:500 dilution
(Upstate Biotechnology), or mouse monoclonal anti-B-actin antibody used at a
1:20,000 dilution (Sigma). Incubation with primary antibody was followed by
incubation with goat anti-rabbit or goat anti-mouse alkaline phosphatase-conju-
gated secondary antibody. Secondary antibodies were used at a 1:10,000 dilution.
Detection of secondary antibody was by chemiluminescence (Tropix). Blots of
JPX9 cells and Jurkat cells (see Fig. 7) were probed for cyclin A and B-actin
simultaneously. The JPX9 blot was then blocked and reprobed for Tax. The blot
shown in Fig. 8 was probed for cyclin A and B-actin simultaneously.

Cell cycle synchronization. Cells were cultured in the presence of 2 mM
thymidine (Sigma) in DMEM plus 10% FBS for 24 h, allowed to recover in
complete medium with no thymidine for 12 h, and then propogated again in 2
mM thymidine for an additional 14 h.

RESULTS

Tax represses the cyclin A promoter in ts13 and Jurkat cells.
Because expression and replication of viruses frequently show
cell phase dependence, it is reasonable that some viruses would
evolve to control the cell cycle machinery of infected cells.
HTLV-1 Tax, SV40 TAg, and HBV X are all transcriptional
activators as well as transforming proteins. Thus, initially, we
wondered whether Tax would conserve the CCG1/TAF;250-
complementing activity shared by SV40 TAg (13) and HBV X
(29). To address this, we checked for functions in ts13 cells.
While we could recapitulate the described activity of SV40
TAg in supporting the growth of ts13 cells at the restrictive
temperature (39°C), we found that Tax provided no such func-
tion (K. V. Kibler, unpublished data).

TAg has also been shown to support temperature-sensitive
TAF,;250-dependent transcription (13). Thus, to understand
better the divergence between Tax and TAg in ts13 cells, we
next surveyed the TAF;250-dependent transcription of the
well-characterized cyclin A promoter. We assayed for Tax ef-
fects on a cyclin A promoter-luciferase reporter (CycA-luc
[88]) by transfecting ts13 cells with CycA-luc alone, CycA-luc
with a Tax expression plasmid (pHpX), CycA-luc with a
TAF250 expression plasmid (pCMV-hTAF,;250 [88]), or
CycA-luc with a TAg expression plasmid (pRSV-TAg) (Fig.
1A). Compared to expression with CycA-luc alone (activity set
as 100%) (Fig. 1A, lane 1), coexpression of either TAF;250
(Fig. 1A, lane 3) or SV40 TAg (Fig. 1A, lane 4) increased
luciferase expression by 50 and 180%, respectively. By con-
trast, in the same assay, Tax repressed CycA-luc activity by
76% (Fig. 1A, lane 2), with a dose-dependent profile (Fig. 1B).
To rule out nonspecific cytotoxicity as a trivial explanation for
Tax’s repression of the cyclin A promoter, we also transfected
ts13 cells with an HTLV-1 LTR chloramphenicol acetyltrans-
ferase reporter (pU;RCAT). Figure 1C demonstrates that Tax
activated pU;RCAT as it repressed CycA-luc, rendering it
unlikely that observations of the latter occur from nonspecific
cytotoxicity.

To verify that the effect of Tax on CycA-luc was not idio-
syncratic to ts13 cells, we also tested Jurkat T cells. Because
several other TATA-less promoters also show TAF,;250-
dependent expression, we assayed two additional promoters,
DNA polymerase a and cyclin D3, in combination with the



VoL. 75, 2001

A. B.

Tax REPRESSION OF CYCLIN A PROMOTER 2163

C.

H CycA-luc +Tax B CycA-luc N+0.5 Tax B pU3RCAT
O+TAF250 +TAg ] O0+2.0 Tax [E+5.0 Tax \ pU3RCAT+Tax
450 120 S 20
400 T 18 1
2 350 = 1%
z 2 2z 14 -
s = =
2 300 : %
2 2 < 12
& 250 +— &
g B 'E-. E 10
3200 fope— E] o
= i = £ 8
2 150 — 2 =
3 = g 6
& &
4
2 s
0 A
1 2 3 4 1 2 3 4 1 2

FIG. 1. Tax represses the cyclin A promoter. (A) The cyclin A promoter is activated in ts13 cells at 39°C by either human TAF ;250 or SV40
TAg but is repressed by Tax. Cells were transfected with CycA-luc alone (1 ng) (lane 1), CycA-luc plus pHpX (Tax expression vector, 2 ng) (lane
2), CycA-luc plus pPCMV-hTAF;250 (2 pg) (lane 3), or CycA-luc plus pRSV-TAg (2 pg) (lane 4). Transfected cells were incubated at the
permissive temperature (32°C) for 12 h and then at the restrictive temperature (39°C) for 24 h and harvested. Results are averages from five
independent experiments. Error bars show standard deviations of the means. (B) ts13 cells were transfected as described above with either
CycA-luc alone (1 ng) (lane 1) or increasing amounts (as indicated) of pHpX (lanes 2 to 4). Results are averages from five independent
experiments. (C) Tax activates the HTLV-1 LTR (pU3RCAT) in ts13 cells at 39°C. ts13 cells were transfected with pU;RCAT (1 pg), with (lane
2) or without (lane 1) Tax (2 pg). Chloramphenicol acetyltransferase (CAT) assays were performed as described previously (24).

luciferase reporter (DPA-luc plasmid [60] and CycD3-luc plas-
mid [gift of P. Hind], respectively); both of these promoters,
like cyclin A, conserve a promoter-upstream CREB/ATF bind-
ing site (Fig. 2A). When these three promoter-reporter plas-
mids were separately assayed in Jurkat cells, we observed that
Tax efficiently repressed transcription from CycA-luc (Fig. 2B,
lane 2), DPA-luc (Fig. 2B, lane 6), and CycD3-luc (Fig. 2B,
lane 10) to 28, 19, and 12% of baseline activities, respectively.
When CREB was exogenously overexpressed by transfec-
tion, we found that Tax repression of CycA-luc was amelio-
rated (data not shown). These results taken together with
the above findings (Fig. 1) indicate that Tax, in both ts13
and Jurkat backgrounds, exerts a consistently repressive ef-
fect on several CREB/ATF-binding-site-containing TATA-
less promoters.

Tax abrogates activation by TAF,;250 or TAg. How might
Tax mechanistically repress the cyclin A, DNA polymerase a,
or cyclin D3 promoter? Both TAF,;250 and TAg complement
the transcription of the cyclin A, DNA polymerase a, or cyclin
D3 promoter at the restrictive temperature in ts13 cells (Fig.
1A and data not shown). To understand if the repressive effect
of Tax directly negates the activating effects of TAF;;250
and/or TAg, we checked cotransfections of Tax with TAF ;250
or SV40 TAg. Figure 3 shows results of Tax with CycA-luc plus
TAF;250 (Fig. 3A), Tax with CycA-luc plus TAg (Fig. 3B),
Tax with DPA-luc plus TAF;250 (Fig. 3C), and Tax with
DPA-luc plus TAg (Fig. 3D). In these experiments, we noted
that TAF;;250 enhanced expression of CycA-luc and DPA-luc
to 141% (Fig. 3A, lane 2) and 323% (Fig 3C, lane 2), respec-

tively. However, with increasing amounts of cotransfected Tax,
the activating effects of TAF ;250 were abrogated (Fig. 3A and
G, lanes 3 to 5). Similar findings also documented Tax’s abro-
gation of the activation by TAg of either CycA-luc (Fig. 3B) or
DPA-luc (Fig. 3D). Collectively, these results show that Tax
repression at the assayed promoters is dominant over activa-
tion by either TAF;250 or SV40 TAg.

Repression by Tax correlates with the CREB/ATF binding
site. In ts13 cells, it has been proposed that disruption of the
TAF,;250 interaction with factors bound to a promoter-up-
stream CREB/ATF site upstream of the promoter (89) ex-
plains the CycA expression defect at the restrictive tempera-
ture. Because Tax additively repressed expression from the
cyclin A promoter in ts13 cells at 39°C, and because Tax is
known to bind CREB/ATF directly (22, 77, 83), we reasoned
that physical sequestration by Tax might explain transcrip-
tional repression. To correlate repression with Tax and CREB/
ATEF interaction, we transfected ts13 cells with a Tax H52Q
point mutation protein (TaxH52Q) (22) which is defective in
binding to CREB. Interestingly, while wild-type Tax repressed
both basal (Fig. 4A, lane 2) and TAF,;250-activated (Fig. 4A,
lane 5) expression of CycA-luc, TaxH52Q failed to do either
(Fig. 4A, lanes 3 and 6). TaxH52Q is deficient for activation of
the HTLV-1 LTR but retains the ability to activate promoters
through NF-«kB binding sites (70). To verify that the lack of
repression of the cyclin A promoter by TaxH52Q did not result
trivially from reduced protein expression, we compared levels
of induction of an NF-kB-responsive reporter (pNFkB-luc) by
Tax and TaxH52Q (Fig. 4B, lanes 5 and 6). Consistent with
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FIG. 2. Tax represses cyclinA, cyclin D3, and DNA polymerese a promoters in Jurkat T cells. (A) Schematic representations of the cyclin A
(30), the cyclin D3 (9), and the DNA polymerase « (60) promoters showing approximate positions of transcription factor binding elements and
the transcription start sites (Inr[INR]). SRE, serum response element. (B) Tax represses the expression of these promoters in Jurkat cells. Jurkat
cells were transfected with either the promoter-reporter alone (1 pg) (lane 1), the reporter plus 2 pg of Tax (lane 2), the reporter plus 2 ug of
TAF;250 (lane 3), or the reporter plus 2 pg of TAg (lane 4). Results are averages from two independent experiments.

there being comparable levels of protein expression, TaxH52Q
activated pNFkB-luc to a magnitude similar to that activated
by wild-type Tax while it did not activate the HTLV-1 LTR-
responsive reporter (LTR-luc) (Fig. 4B, lane 3). Similarly, re-
pression of DPA-luc was also found to correlate with Tax
proteins competent for binding CREB/ATF (data not shown).
These results are consistent with Tax repression requiring
physical Tax-CREB contact.

The involvement of CREB/ATF in repression was further
analyzed using CREB/ATF binding site-intact or CREB/ATF
binding site-deleted (DPAAATF-luc) forms of DPA-luc. In

these assays, we tested both Tax (Fig. 4C) and a Tax point
mutation protein, TaxV89A, which binds CREB with wild-type
affinity (Fig. 4D). Figure 4D shows that in contrast to
TaxH52Q, TaxV89A effectively repressed DPA-luc (Fig. 4D,
lanes 2 to 4). On the other hand, CREB/ATF-independent
expression from DPAAATF-luc (Fig. 4C and D, lanes 6 to 8)
was insignificantly affected by either Tax or TaxV89A. Collec-
tively, the results in Fig. 4A, C, and D verify that Tax interferes
with CREB/ATF-dependent activity at the cyclin A and DNA
polymerase a promoters and that this interference correlates
with the ability of Tax to bind CREB.
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FIG. 3. Activities of TAF[;250 and TAg are repressed by Tax in ts13 cells. ts13 cells were transfected with 1 ng of CycA-luc (A and B) or
DPA-luc (C and D). (A) CycA-luc was cotransfected with TAF;250 (2 pg) and increasing amounts of Tax. (B) CycA-luc was cotranfected with
TAg (2 pg) and increasing amounts of Tax. (C and D) Transfections of DPA-luc with either TAF;250 (C) or TAg (D) and increasing amounts
of Tax. Results are averages from a minimum of five independent experiments.

Tax repression does not require CBP binding. It has been
shown that optimal Tax function requires binding not only to
CREB but also to CREB-binding protein (CBP) (20). Inter-
estingly, Tax sequestration of CBP has also been proposed as
a mechanism which explains the repression of MyoD-depen-
dent (63) and p53-dependent (85) transcription. In view of
these findings, we wished to clarify whether repression of the
cyclin A, DNA polymerase «, and cyclin D3 promoters was
also a consequence of CBP binding by Tax. To address this
question, we interrogated the activities of two Tax mutant
proteins, TaxL90A and TaxV89A, in ts13 cells. TaxL90A and
TaxV89A have been characterized for binding to CBP (28); the
former binds CBP with wild-type affinity, while the latter (al-

though intact for CREB binding) binds CBP negligibly. When
these two mutant proteins were tested, both were found to
repress indistinguishably the cyclin A (Fig. 5A) and the cyclin
D3 (Fig. 5B) promoters. Similar repression was also observed
for both TaxLL90A and TaxV89A on the DNA polymerase o
promoter (data not shown). These findings clarify that Tax
repression of the cyclin A and cyclin D3 promoters does not
require CBP binding.

Tax affects protein complex formation at the CREB/ATF
binding site. The HTLV-1 LTR contains three CREB/ATF
binding sites (37). Highly efficient activation of this viral LTR
by Tax is, in part, explained by Tax-CREB complex formation
at cognate sites in the LTR (23, 46, 59). This ability of Tax to
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FIG. 4. Repression of the cyclin A and DNA polymerase o promoters by Tax involves interaction with CREB/ATEF. (A) ts13 cells were
transfected with CycA-luc alone (1 pg) (lane 1); CycA-luc plus Tax (2 pg) (lane 2); CycA-luc plus a Tax mutant protein which cannot bind CREB,
TaxH52Q (2 pg) (lane 2) (22); CycA-luc plus TAF;;250 (2 pg) (lane 4); CycA-luc plus TAF;250 and Tax (2 pg) (lane 5); or CycA-luc plus
TAF};250 and TaxH52Q (2 pg) (lane 6). (B) ts13 cells were transfected with a luciferase reporter containing either an HTLV-1 LTR promoter
(LTR-luc) (lanes 1 to 3) or an NF-kB-responsive promoter (pNFkB-luc) (lanes 4 to 6). Transfections were with the reporter alone (0.5 ug) (lanes
1 and 4), the reporter plus Tax (0.5 pg) (lanes 2 and 5), or the reporter plus TaxH52Q (0.5 pg) (lanes 3 and 6). (C) ts13 cells were transfected
with either DPA-luc (wild-type promoter; lanes 1 to 4) or DPAAATF-luc (promoter with the ATF site deleted; lanes 5 to 8). Transfections were
with DPA-luc alone (1 pg) (lane 1), DPA-luc plus increasing amounts of Tax (lanes 2 to 4), DPAAATF-luc alone (1 pg) (lane 5), or DPAAATF-luc
plus increasing amounts of Tax (lanes 6 to 8). (D) ts13 cells were transfected with DPA-luc (lanes 1 to 4) or DPAAATF-luc (lanes 5 to 8).
Transfections were with DPA-luc alone (1 pg) (lane 1), DPA-luc plus increasing amounts of TaxV89A (lanes 2 to 4), a Tax point mutant protein
with wild-type CREB-binding activity (28), DPAAATF-luc alone (5 pg) (lane 5), or DPAAATF-luc plus increasing amounts of TaxV89A (lanes
6 to 8). Results are averages from three independent experiments (A and D).

activate transcription via CREB/ATF sites is context specific
since at other CREB binding sites (i.e., those found in cellular
promoters), Tax-CREB complex formation may occur (46, 59,
77), but no activation is seen. The above CycA-luc, DPA-luc,
and CycD3-luc results are compatible with an alternative func-
tional interpretation: Tax-CREB interaction at some TATA-
less promoters manifests as repression.

To check that functional repression by Tax correlates with
“altered” protein complex formation at CREB/ATF sites, we

performed EMSAs using nuclear extracts from several T-cell
lines (Jurkat, C8166-45, MT4, uninduced JPX9, and metal-
induced JPX9 cells). Jurkat is a well-established T-cell line
whose transformation is unrelated to HTLV-1. C8166-45 (64)
and MT4 (53) are HTLV-1-transformed T cells which express
Tax constitutively. JPX9 cells are derived from Jurkat cells and
contain an integrated Tax gene under the control of a metal-
inducible metallothionein promoter (58) (Fig. 6D). Using
these extracts, we examined complex formation with either a



VoL. 75, 2001

120 B CycA-luc
0+0.5 TaxL90A
100 +— +2.0 TaxL90A
M +5.0 TaxL90A
[J+0.5 TaxV89A
80 — | +2.0 TaxV89A

E+5.0 TaxV89A

Relative Luciferase Activity
'S N
= =

[
(=)
I

1 2 3 4 5 6 7

Tax REPRESSION OF CYCLIN A PROMOTER 2167

120
B CycD3-luc
O+0.5 TaxL90A
100 ! +2.0 TaxL90A

M +5.0 TaxL90A
[0+0.5 TaxV89A
+2.0 TaxV89A
E+5.0 TaxV89A

*®
=]

Relative Luciferase Activity
& N
= =
|

20 - —

1 2 3 4 5 6 7

FIG. 5. Tax represses expression of cyclin A and cyclin D3 promoters through a CBP-independent mechanism. (A) ts13 cells were transfected
with CycA-luc alone (1 pg) (lane 1) or CycA-luc plus increasing amounts (as indicated) of either TaxL90OA (lanes 2 to 4) or TaxV89A (lanes 5 to
7). (B) The same transfections were repeated using CycD3-luc. Note that TaxL90A is functionally and physically intact for interaction with CBP
but that TaxV89A is deficient in both respects. Results are averages from two independent experiments.

probe which contains the sequence of the ATF element from
the cyclin A promoter (Fig. 6A, lanes 1 to 4, and C, lanes 1 to
2) or a second probe which contains a mutated ATF sequence
(mATF) (Fig. 6A, lanes 5 to 8, and C, lanes 3 to 4). Comparing
ATF to mATF (Fig. 6A and B), we could resolve three se-
quence-specific moieties (I, II, and III,) together with several
nonspecific bands. Among the three sequence-specific com-
plexes, the profiles of bands II and III changed when Tax-
expressing C8166-45 cells or MT4 cells were compared to Ju-
rkat cells. When JPX9 cells were induced with zinc to express
Tax (Fig. 6C, lane 2), corresponding changes in the moiety II
and IIT complexes were also noted (Fig. 6C, lanes 1 and 2). In
both instances, Tax expression led to an enhanced band II and
a reduced prominence in band III. A complex formed on a
probe containing the TdT Inr sequence was used as a parallel
control to indicate that equivalent concentrations of nuclear
factors were used for the Jurkat, C8166-45, and MT4 extracts
(Fig. 6A, lanes 9 to 12). Addition of anti-Tax antibody to the
C81 nuclear extract prior to addition of the labeled probe
resulted in a shift of band II (data not shown), consistent with
the presence of Tax protein in this complex. These results are
compatible with an interpretation that Tax affects the compo-
sition of a complex(es) formed at the cyclin A-derived CREB/
ATF site.

We next used an EMSA probe which included both the ATF
binding site and the Inr sequence from the cyclin A promoter
(30). With the longer probes, resolution of protein-DNA com-
plexes was less distinct. Nevertheless, the protein-DNA com-
plexes formed on the ATF-Inr probe using nuclear extracts
from two Tax-expressing cell lines (C8166-45 and MT4 cells)
(Fig. 6B, lanes 2 and 3) were clearly different from those
formed using a non-Tax-expressing extract (Jurkat) (Fig. 6B,
lane 4). Changes in complex formation on this probe were also

apparent when we compared uninduced JPXO9 cells to induced
JPX9 cells (Fig. 6C, lanes 7 to 8). This change was not a
consequence of zinc induction, as no change was detected in
nuclear extracts of Jurkat cells induced with ZnCl, (Fig. 6C,
lanes 5 to 6). While we do not fully understand why complexes
form differently in the various extracts, the results collectively
support an interpretation that these are Tax-mediated
changes.

Reduced cyclin A expression in Tax-expressing and in
HTLV-1-transformed cells. From several perspectives, the
above findings would be fully compatible with perturbed cyclin
A expression in Tax-expressing and in HTLV-1-transformed
cells. Levels of cyclin A protein normally oscillate during the
cell cycle, with rapid accumulation at the beginning of S phase
(reviewed in reference 42). To examine at the intracellular
level Tax effects on cyclin A in early S phase of the cell cycle,
we synchronized JPX9 and Jurkat cells using a double thymi-
dine block protocol which enriches for nascent S cells (re-
viewed in reference 75). Cells released from the double thy-
midine block commence to progress from G, into S. Cyclin A
expression in thusly processed cells was monitored for JPX9
(Fig. 7A, lanes 1 to 5), as well as JPX9 cells treated with zinc
to express Tax (Fig. 7A, lanes 1 and 6 to 9). As controls, Jurkat
cells, untreated (Fig. 7B, lanes 1 to 5) or treated with zinc (Fig.
7B, lanes 1 and 6 to 9), were also assessed to determine any
effects which might occur solely from zinc treatment.

Cyclin A expression was assessed by immunoblotting using
specific antiserum. On the same blots, we also checked for
expression of Tax (Fig. 7A) and the cellular B-actin protein
(Fig. 7A and B). Signals were quantitated by densitometry, and
values were normalized to those for B-actin (Fig. 7C). Based
on quantitations from the Western blots, we deduced that
cyclin A levels increased, as expected, in Jurkat and JPXO cells
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as the cells entered into S phase (Fig. 7C). Zinc treatment of
Jurkat cells had an unexpected effect of enhancing cyclin A
expression. However, zinc treatment of JPX9 cells (which
clearly induced Tax expression [Fig. 7A, lanes 6 to 9]) had a
markedly suppressed cyclin A expression (Fig. 7C). Thus,
whereas zinc treatment nonspecifically enhanced cyclin A in
Jurkat cells, the same treatment in JPX9 cells distinctly estab-
lished Tax expression with cyclin A suppression.

The correlation between Tax expression and cyclin A repres-
sion in JPX9 cells prompted us to investigate authentically
HTLV-1-transformed cell lines. We compared cyclin A expres-
sion in Jurkat, HeLa, and four HTLV-1 cell lines: C8166-45,
MT4, ILT-Hod, and TL-Su. MT4 and C8166-45 were derived
from coculture of human cord leukocytes and HTLV-1-in-
fected cells (53, 64). TL-Hod was derived from an ATL patient
(3), while TL-Su was derived from an HTLV-1 carrier (3).
Immunoblotting with cyclin A-specific serum showed that
amounts of cyclin A were greatly reduced in all four HTLV-
1-positive cells (Fig. 8A, lanes 3 to 6) when compared to the
amount in Jurkat (Fig. 8A, lane 2) or HeLa (Fig. 8A, lane 1)
cells. In Fig. 8B, cyclin A expression values are graphed after
normalization to 3-actin values. These results, together with a
previous report of a reduced level of cyclin A mRNA in
HTLV-1-infected T-cell lines (2), are consistent with reduced
cyclin A as a characteristic of HTLV-1 infection and transfor-
mation.

DISCUSSION

Viruses are obligatory host cell parasites. Consequently, it is
not surprising that the life cycles of viruses importantly depend
on the cell cycle of the host. Parvoviruses, for example, rely on
the host cell S phase to replicate viral-DNA genomes (14).
Herpesviruses interact with several cyclins and cyclin-depen-
dent kinases, implicating critical participation by these cell
cycle proteins in virus expression and replication (66, 86). The
human immunodeficiency virus utilizes the host G, phase to
complete reverse transcription and to prepare for integration
of its proviral genome (76, 94), and emerging evidence indi-
cates that the HTLV-1-encoded Tax protein plays important
roles in modulating cell cycle progression (reviewed in refer-
ence 55). Here, we unexpectedly found that the levels of an S-
and M-phase cyclin, cyclin A, is repressed by HTLV-1 Tax.

Expression of Tax by HTLV-1 has been correlated with
cellular transformation (62; reviewed in reference 91). Argu-
ably, effects of Tax on cell cycle progression are important to
the transforming biology of HTLV-1. Historically, Tax was first
characterized as a potent activator of gene expression (re-
viewed in reference 91). Hence, the ability by Tax to activate

Tax REPRESSION OF CYCLIN A PROMOTER 2169

mitogenic factors such as IL-2 (34, 73), IL-2 receptor a (5), Jun
(19), and Fos (18) was predictable and is fully compatible with
its expected cell growth-promoting phenotype. Recently, it has,
however, become apparent that several prototypic transcrip-
tional gene activators such as p53 (21, 35, 50), E2F (96), and
Ela (6, 47) are also potent transcriptional repressors of other
genes. Thus, it is suggested that the ambient outcomes of
transactivator proteins reflect the collective balance of up- and
down-regulatory effects on different subsets of genes. Indeed,
for HTLV-1 Tax, the initial suggestion of its potential as a
trans-repressor (39) has been rapidly extended by a flurry of
studies describing its repressive activity on factors such as p53
(84), p16INK4a (49, 79), Ick (48), p18INK4c (80), c-Myc (69),
MADL1 (41), and c-Myb (57), among others.

In considering transcriptional repression by Tax, there are
currently two proposed mechanisms. First, a series of examples
indicate that Tax works repressively through its interaction
with an E-box-binding basic-helix-loop-helix protein (39, 48,
63, 69, 78, 80, 84). Second, other studies support mechanistic
repression by Tax through its sequestration of p300/CBP co-
activator proteins (4, 78, 85). Here, our descriptions of the
cyclin A, cyclin D3, and DNA polymerase o promoters suggest
a third route through which Tax manifests transcriptional re-
pression: context-specific binding to CREB/ATF.

Several findings helped us define the mechanism utilized by
Tax to repress the promoter activities of cyclin A, cyclin D3,
and DNA polymerase o. Initially, we observed that Tax pro-
teins competent for CREB binding (e.g., wild-type Tax and
TaxV89A) exhibited repression but that a Tax mutant protein
(TaxH52Q) which cannot bind CREB failed to exert this re-
pression (Fig. 4A). Next, that DPA-luc, but not DPAAATF-
luc, was repressed by Tax delineated a requirement for CREB/
ATF in this repressive process (Fig. 4C and D). Last, similarly
to another example of the down-regulation of the cyclin A
promoter through its upstream CREB/ATF site (92), we found
distinct changes in protein-DNA complex formation when us-
ing CREB/ATF-motif-containing probes to compare nuclear
extracts with or without Tax (Fig. 6). These observations, cou-
pled with the demonstration that cyclin A, cyclin D3, and DNA
polymerase o repression is CBP independent (Fig. 5), provided
a first illustration of Tax-mediated repression through context-
specific sequestration of CREB/ATF. We note that in other
systems, context-specific activation and repression is not with-
out precedent. For instance, at many promoters the YY1 pro-
tein activates transcriptional initiation by stimulating recruit-
ment of RNA polymerase II while at other promoters YY1
represses transcription by sequestering CREB/ATF (95). Sim-
ilarly, depending on context, the cyclin A gene has also been

FIG. 6. Tax affects protein-DNA complexes formed at the cyclin A promoter. (A) EMSA using an ATF binding site probe. Nuclear extracts,
as indicated, were incubated with labeled probes consisting of either the wild-type ATF binding site (lanes 1 to 4), mATF (lanes 5 to 8), or a TdT
promoter sequence (as a parallel control to indicate factor concentration of extracts; lanes 9 to 12). Probe alone is shown in lanes 1, 5, and 9. (B)
EMSA using an ATF plus Inr probe derived from the cyclin A promoter. Probe alone is shown in lanes 1 and 5. (C) EMSA using the ATF probe
(lanes 1 to 2), the mATF probe (lanes 3 to 4), and the ATF plus Inr probe (lanes 5 to 8) in nuclear extracts of JPX9 cells (lanes 1 to 4 and 7 to
8), which were either uninduced or induced with ZnCl, or Jurkat cells (lanes 5 to 6) that had or had not been induced with ZnCl,. (D) Western
blot of cells using anti-Tax serum. C8166-45 and MT4 cells express Tax constitutively, JPX9 cells induced with 120 uM ZnCl, express Tax, and
Jurkat cells and uninduced JPX9 cells do not express Tax. Note that we have consistently observed a difference in the migration size of the Tax
protein from JPX9 cells. An explanation for this is currently unknown. (E) Sequences of probes are shown with the ATF site in bold (wild type
or mATF) and the Inr underlined; the transcription start site is denoted by asterisk.
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is shown in arbitrary densitometric units.
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shown to be either up- or down-regulated through its upstream
CREB/ATF site (15, 16, 92, 93).

How might HTLV-1 benefit from repressed expression of
cyclin A? In relevant T-cell lines, we clearly observed that
amounts of cyclin A are significantly reduced both by HTLV-1
transformation (Fig. 8) and by the singular expression of Tax
(Fig. 7). These findings agree with a previous report of reduced
cyclin A mRNA in HTLV-1-infected T-cells (2). Interestingly,
in other virological settings, cyclin A is similarly repressed by
cytomegalovirus (36, 65) and herpes simplex virus (1) infection
of cells. While we do not fully understand why viruses should
repress cyclin A, a few thoughts come to mind. First, we note
that cyclin A negatively regulates E2F-1 activity (45) during the
S phase of the cell cycle. One speculation is that reduced
amounts of cyclin A result in a prolonged S phase, which
thereby benefits the replication of viral genomes. Second, a
role in preventing aberrant reassembly of DNA initiation com-
plexes in the S phase of the cell cycle was recently further
attributed to cyclin A-cdk2 (12). In this perspective, normal
cyclin A-cdk2 activity ensures that only one round of DNA
replication occurs within a single S phase. Considered thusly,
Tax repression of cyclin A may engender aberrant DNA redu-
plication, providing another explanation for how this oncopro-
tein induces aneuploidogenic abnormalities in cells (reviewed
in reference 43). Finally, in its role as a mitotic cyclin, cyclin A
also regulates egress of cells from mitosis (74, 87). Suppression
of cyclin A may result in accelerated progression through mi-
tosis, further accounting for the failure in HTLV-1-trans-
formed cells to faithfully execute the mitotic spindle assembly
checkpoint (41).

The unexpected observation that Tax represses cyclin A
provides a further illustration of the intimate relationship be-
tween viruses and host factors. It additionally highlights the
delicate balance between positive and negative events in main-
taining cellular homeostasis. Our Tax-cyclin A results add to
the growing literature stating that this cyclin is commonly tar-
geted by viruses. Thus, HTLV-1 joins adenovirus (61), HBV

(90), and herpesviruses (1) in subverting the function(s) of
cyclin A. Future studies on virus-cyclin interplays are likely to
advance our understanding of the symbiosis between viruses
and cells.
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